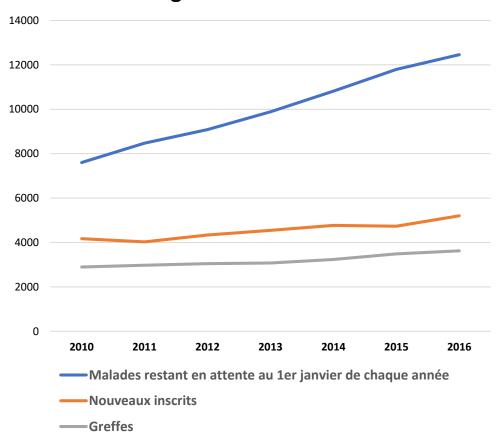
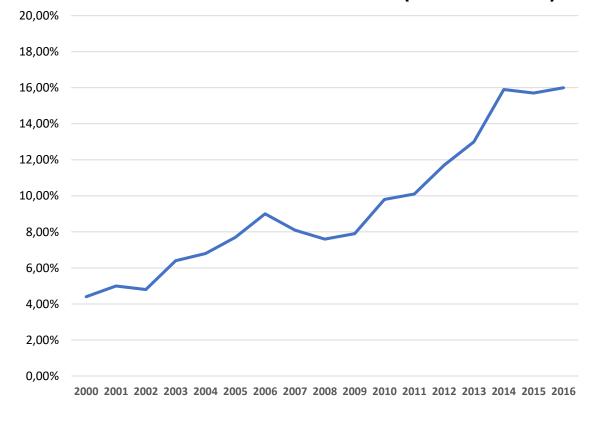


Traitement des patients en attente de greffe rénale ABO incompatible

Congrès de la société française d'Hémaphérèse


Montpellier le 07/11/2018

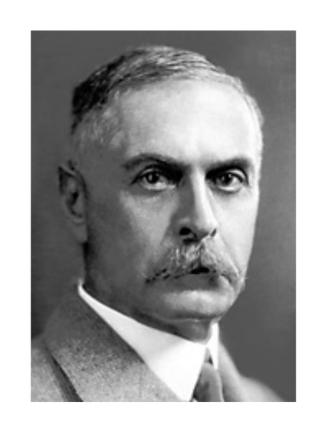
Dr V. PERNIN


CHU Lapeyronie - Montpellier

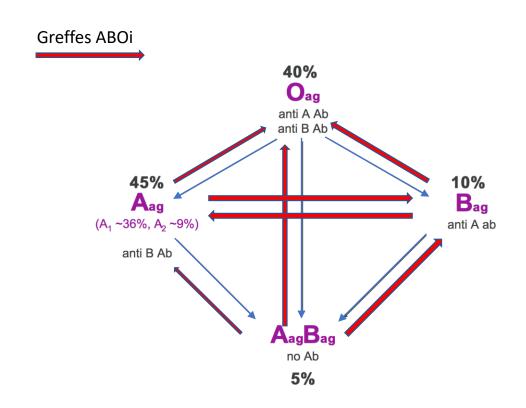
Une pénurie de greffons.... Un temps d'attente de plus en plus long....

Activité de greffe en France 2010-2016

% donneurs vivants en France (données ABM)


Pendant longtemps un des freins à la greffe DV....

....le respect de la compatibilité ABO


LA GREFFE ABO INCOMPATIBLE

Rappels Ag groupe sanguin

- Landsteiner en 1900 découvre les phénomènes d'agglutination entre sangs de différents patients: Prix Nobel de médecine 1930
- Découvre la relation inverse entre la présence « d'Agglutinogènes » du groupe sanguin à la surface des globules rouges et la présence « d'Agglutinines » physiologiques dans le sérum des patients
- Ag du groupe sanguin: **Glycoprotéines** dont la partie polysacharidique confère la spécificité du groupe sanguin
- Les Ag du groupes sanguin sont présents à la surfaces des **globules rouges** mais aussi des **cellules endothéliales et épithéliales** de différents organes comme le rein, le cœur, l'intestin, les poumons, le pancréas... (Marionneau et al., 2001)
- L'apparition de ces Ac sont liés à l'exposition à des structures polysacharidiques proches des Ag groupes sanguins présente dans l'environnement: bactéries intestinales +++ (Yamamoto, 2004)

Rappels Ag groupe sanguin

	Probabilité de greffe ABOi
Receveur Groupe O	60%
Receveur Groupe A	15%
Receveur Groupe B	50%
Receveur groupe AB	0%
Probabilité globale	≈ 30%

Histoire de la greffe ABOi

1eres greffes ABOi Hume et al. 1954

Echecs précoces Rejets humoraux ++ <15% survie greffon à 1an

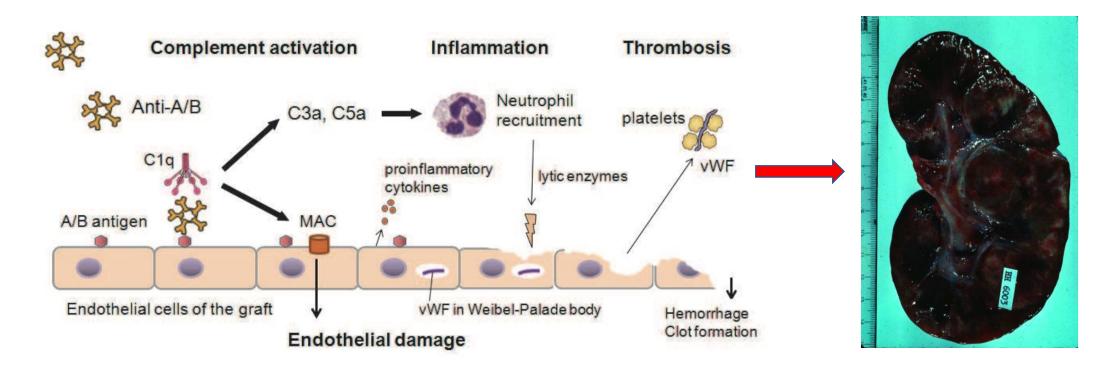
CI à la Tx rénale jusque 1980's

Déplétion des isoaglutinines avec PP (ATG, CT, CsA, Aza)

1^{ère} greffe: erreur de compatibilité 1er succès: survie 22ans (*Squifflet et al.*)

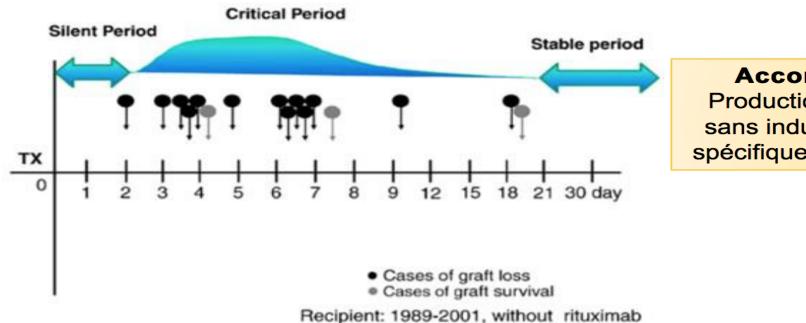
PP/Splénectomie

Essor de la greffe ABOi


Religion shintoïsme: Pas de greffe donneur DCD

>1000 greffes entre 1989 et 2006 Survie greffons identiques à greffe ABO compatible Remplacement de la splénectomie par le **Rituximab**

Tyden et al.


GREFFE ABO INCOMPATIBLE et risque de rejet humoral

Mécanisme du rejet humoral après greffe ABOi

Risque de rejet humoral après transplantation ABOi

494 patients étudiés entre 1989 et 2001 14 rejets aigus tous avant le 21è jour de la greffe

Accomodation =

Production d'anticorps sans induire de lésions spécifiques sur le greffon

Et au delà de J15-21: Accommodation...?

- Même si réascension du titre d'isoagglutinine (rare): pas de rejet humoral
- <u>Accomodation</u>: définie par l'absence de signe clinique et de lésions Histologiques en présence de l'Allo-anticorps
- Cependant 80% des biopsies protocolaires présentent des dépôts de C4d+ (activation du complément par Ac) mais sans signe histologique de rejet humoral associé et sans aucun impact sur la survie du greffon

Mécanismes:

- Uprégulation des molécules protectrices de endothélium CD55 et CD59
- Réduction de l'expression des Ag du groupe sanguin à la surface de l'endothélium
- Développement d'un chimérisme endothélial?

Protocole de désensibilisation pour les greffes ABOi

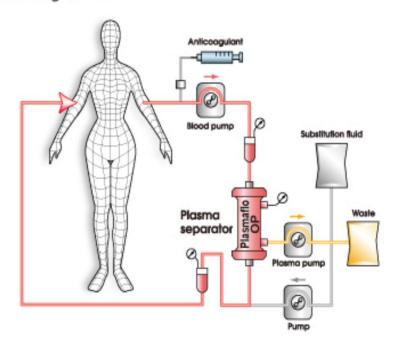
- Traitement pour épurer les Iso-agglutinines:
 - Plasmaphérèses ou immunoadsorptions
- Traitement pour éviter la resynthèse des iso-aglutinines:
 - Déplétion lymphocytes B: historiquement : **Splénectomie**, et depuis 2000's: **RITUXIMAB**
- Transplantation possible dès que titre des iso-aglutinines <1/8 (jusqu' 1/16 voir 1/32 selon certaines équipe)
- Maintien d'un taux bas d'isoagglutinines pendant 2 premières semaines:
 - <1/8 la 1^{ère} semaine , <1/16 la 2^{ème} semaine: EP ou IA si besoin

Quelles techniques d'aphérèse pour épurer les isoagglutinines?

Les techniques d'aphérèses en greffe ABOi

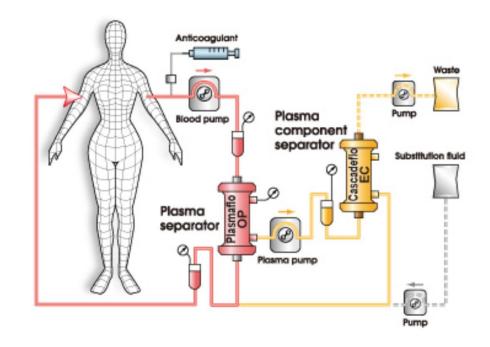
• Les techniques de plasmaphérèse :

- Echanges plasmatiques standard
- Double filtration cascade (DFPP)

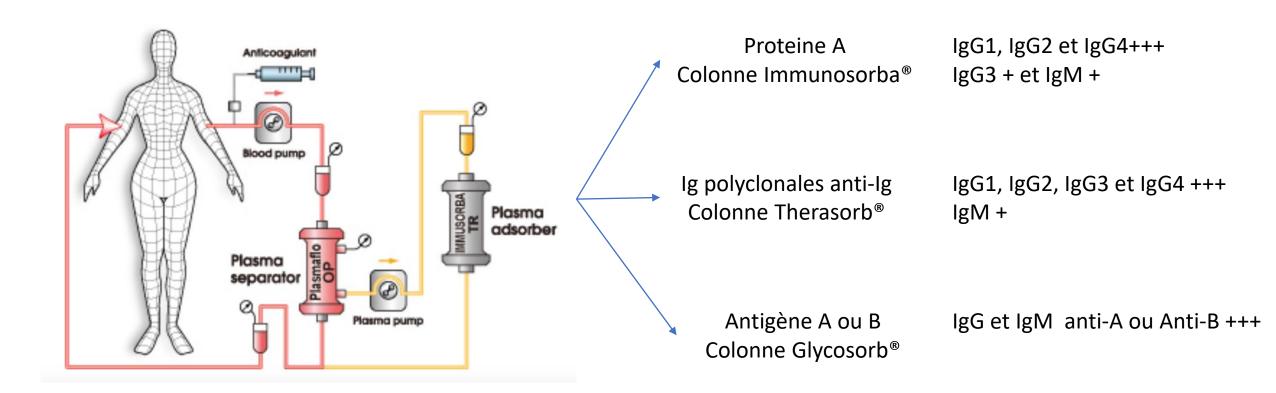

• Immunoadsorptions:

- Immunoadsorptions non spécifiques: Proteine A (Immunosorba®) ou Ig (Therasorb®)
- Immunoadsorptions spécifiques: Glycosorb®

Les techniques de plasmaphérèse


Echange plasmatique standard (Plasmafiltration ou centrifugation)

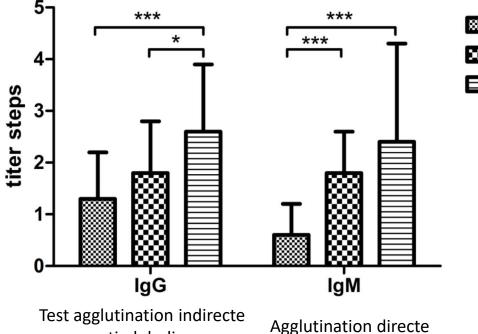
Circuit diagram of PE


Double filtration cascade DFPP

Circuit diagram of DFPP

Techniques d'immunoadsorption

Techniques d'immunoadsorption


	AVANTAGES	INCONVENIENTS
Echanges plasmatiques standard	SimpleElimination Ac anti HLA et isoagglutininesFaible coût	 Non sélectif Elimination d'autres composants du plasma (facteur de coagulation) Nécessité de PFC compatible avec le donneur (risque allergique et infectieux)
Double filtration cascade (DFPP)	 Plus sélectif que EP (molécules haut PM) Élimination anti HLA et isoagglutinines Faible coût Faible besoin de substitution 	 Elimination d'autres composants du plasma (facteur de coagulation) Nécessité de PFC compatible avec le donneur (risque allergique et infectieux)
Immunoadsorption Protein A (Immunosorba®)	semi- sélectifÉlimination anti HLA et isoagglutininesPas besoin de substitution	 - Faible efficacité epuration des IgG3 et IgM - Réaction allergique rare - Coût élevé
Immunoadsorption Ig Therasorb®	 semi-sélectif Élimination anti HLA et isoagglutinines Elimination de toutes les sous classes IgG Pas besoin de substitution 	- Coût élevé
Immunoadsorption Glycosorb®	- Très sélectif- Simple d'utilisation- Pas besoin de substitution	- Pas d'élimination des Ac anti HLA- Coût élevé ++

Elimination des Isoagglutinines (1) Comparaison EP vs IA non spécifique

21 greffes ABOi désensibilisées soit par EP (40 sessions), par IANS (75sessions) ou Couplage DFPP+IA (IAc, 14 sessions)

EP: 1 volume plasmatique, substitution PFC

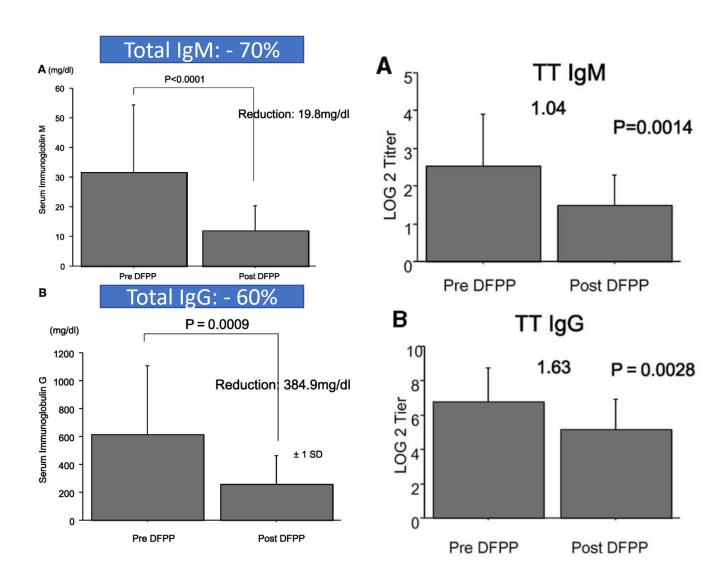
IA: 2 volume plasmatique, pas de subsitution

anti-globuline

IA (n=75)

IAc (n=14)

∃ PE (n=40)


EP semble meilleure que IA non spécifique (Colonne Globaffin®) pour éliminer les isoagglutines

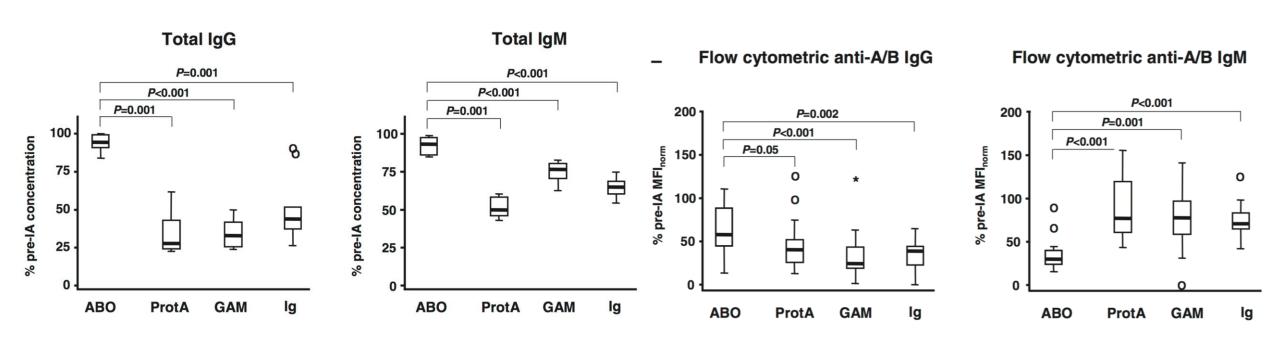
Biais dans l'étude (patients à faible titre traités par EP)

Présence Ag ABO soluble dans le PFC?

Parmentier et al. Atherosclerosis suppl. 2017; 30:253-256.

Elimination des Isoagglutinines (2) DFPP

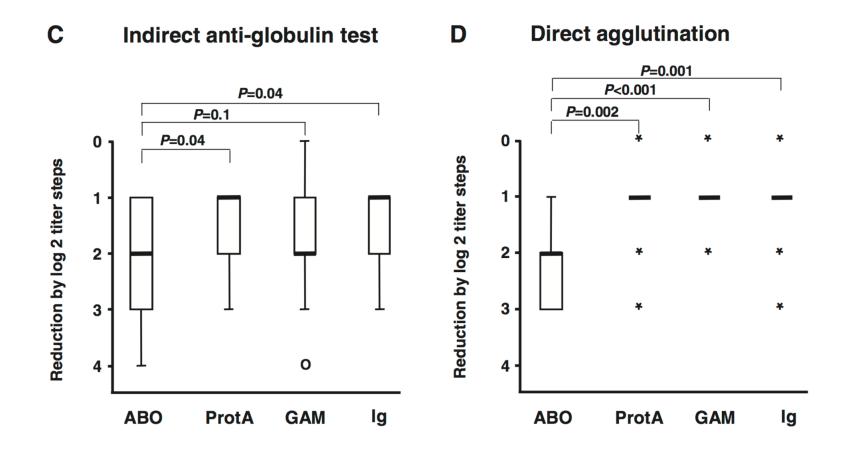
Pas d'étude comparative entre DFPP et les autres techniques d'aphérèse pour l'élimination des isoagglutinines

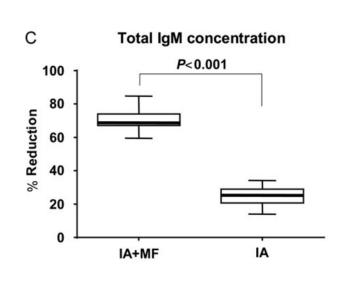

DFPP efficace pour élimination IgM+++ et IgG++

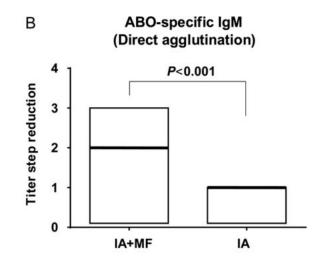
Très utilisée Japon

Attention aux troubles de la coagulation (Elimination fibrinogène +++)

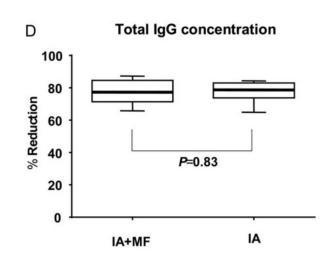
Tanabe K. Transplantation 2007;84: S30–S32

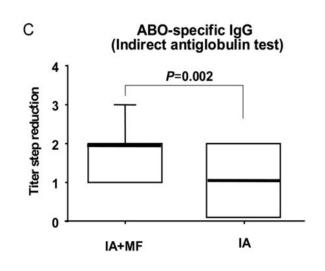

Elimination des Isoagglutinines (4) Comparaison IA spécifiques vs IA non spécifiques


Colonne Glycosorb (n=8), Immunosorba® (n=10), Globaffin® (n=10), Ig Therasorb® (n=10), Volume plasma traité: 8L/session

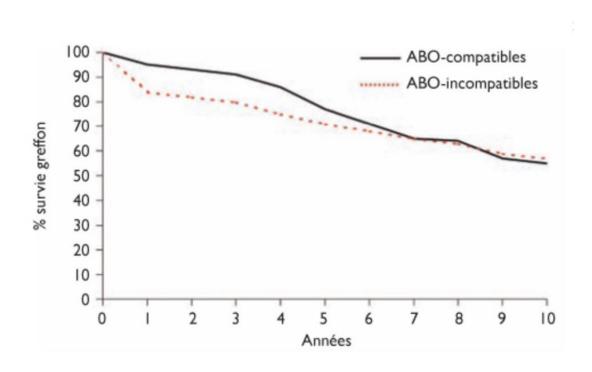

Les colonnes Glycosorb® sont plus efficaces pour l'élimination des isoagglutinines IgM et moins efficaces pour l'élimination des IgG

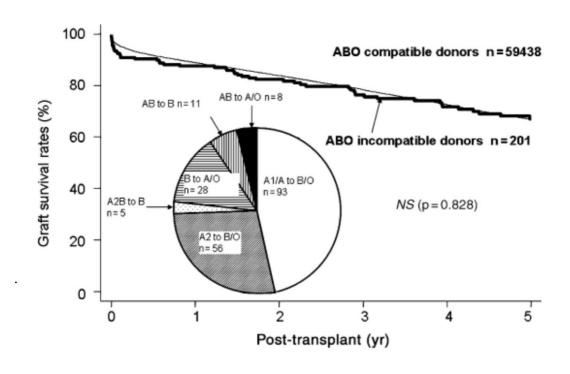
Elimination des Isoagglutinines (5) Comparaison IA spécifiques vs IA non spécifiques




Elimination des Isoagglutinines (6) Couplage DFPP et IANS

Le couplage DFPP + IANS permet une meilleure épuration des isoagglutines IgM et IgG que les IANS seules





Eskandaru F. et al. Nephrol. Dial. Tranplant. 2014

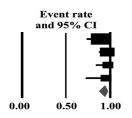
Résultats des greffes ABO incompatibles

Résultats des greffes ABOi

Takahashi K et al. Am J Transplant 2004;4:1089-96

Registre UNOS, Clin Transplant, 2006. 20: 122-6

Complications spécifiques liées à la greffe ABOi


Table 3. Comparison of complications after ABO-incompatible versus ABO-compatible kidney transplantation						
Variable	% ABO-Incompatible (Events/Total)	% ABO-Compatible (Events/Total)	RR (95% CI)	P Value		
Infection						
Severe nonviral infection	12 (105 of 876)	6 (163 of 2666)	1.44 (1.13 to 1.82)	< 0.01		
CMV	22 (210 of 976)	19 (465 of 2462)	1.0.20 (1.04 to 1.37)	0.01		
BK	14 (121 of 875)	8 (215 of 2644)	1.70 (1.14 to 2.56)	0.01		
Biopsy-proven acute rejection	24 (193 of 806)	17 (523 of 3117)	1.39 (1.19 to 1.61)	< 0.001		
Antibody-mediated rejection	10 (75 of 744)	2 (65 of 2839)	3.86 (2.05 to 7.29)	< 0.001		
Bleeding	11 (63 of 579)	4 (53 of 1450)	1.92 (1.36 to 2.72)	< 0.001		

Majoration du risque infectieux, du risque de rejet (AMR) et du risque de saignement

Résultat des greffes ABOi selon le protocole de désensibilisation

Graft survival

Study	Event rate	Lower limit	Upper limit
Genberg et al. (2011)	0.89	0.74	0.96
Tyden et al. (2007)	0.97	0.88	0.99
Wilpert et al. (2010)	0.98	0.84	1.00
Habicht et al. (2010)	0.95	0.73	0.99
	0.94	0.88	0.97

<u>Immunoadsorption</u>

N=4, $I^2=0\%$

Study	Event rate	Lower limit	Upper limit	Event rate and 95% CI	
Ishida et al. (2007)	0.64	0.57	0.70	=	
Toki et al. (2009) (1)	0.68	0.60	0.74	■	
Takahashi et al. (2005)	0.80	0.74	0.85		
Ishida et al. (2000)	0.73	0.63	0.81	🖶	
Toki et al. (2009) (2)	0.79	0.66	0.88	-	
Fuchinoue (2011)	0.95	0.89	0.98		
Kaihara et al. (2005)	0.74	0.55	0.87	-■ -	
Kohei et al. (2012)	0.95	0.89	0.98		
Tanabe et al. (2009) (1)	0.93	0.84	0.97	-	
Gloor et al. (2005)	0.85	0.69	0.94	 ==	
Waigankar et al. (2013)	0.81	0.61	0.92		
Kong et al. (2013)	0.97	0.92	0.99		
Tobian et al. (2009)	0.93	0.82	0.98	-	
Shirakawa et al. (2011)	0.97	0.90	0.99	-	
Kenomchi et al. (2008)	0.90	0.69	0.98		
Lipshutz et al. (2011)	0.94	0.69	0.99		
Ishikawa et al. (2008)	0.83	0.37	0.98	_ _= -	
Uchida et al. (2012)	0.98	0.76	1.00		
Ando et al. (2004)	0.97	0.63	1.00	- 	
Hatakeyama et al. (2014)	0.96	0.62	1.00		
Silvestre et al. (2014)	0.95	0.55	1.00		
	0.88	0.83	0.92	•	
				0.00 0.50 1.00	

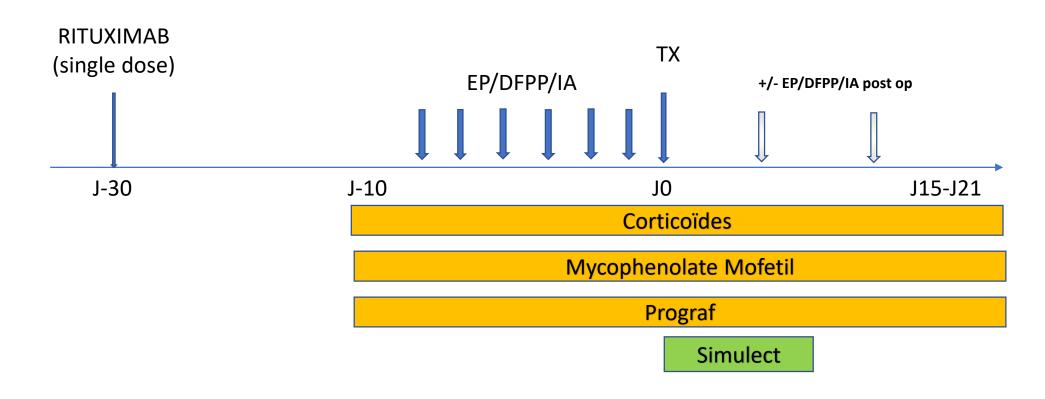
Méta-analyse 82 articles 4810 greffes ABOi

Survie du greffon semble meilleure lorsque les protocoles de désensibilisation comprenne des IA (94% [88%-97%] vs EP 88% [83%-92%]

Résultat des greffes ABOi selon le protocole de désensibilisation

Graft survival

Grant	Sui viva	<u>a1</u>				
Study	Event rate	Lower limit	Upper limit		Event ra and 95%	
Genberg et al. (2011)	0.89	0.74	0.96			
Winters et al. (2004)	0.85	0.65	0.94			╼═┤
Kong et al. (2013)	0.97	0.92	0.99			
Shirakawa et al. (2011)	0.97	0.90	0.99			-
Tyden et al. (2007)	0.97	0.88	0.99			-
Gloor et al. (2005)	0.82	0.49	0.95		- ⊢	-=-
Kohei et al. (2012)	0.98	0.89	1.00			-
Wilpert et al. (2010)	0.98	0.84	1.00			
Tanabe et al. (2009) (1)	0.96	0.76	0.99			_
Habicht et al. (2010)	0.95	0.73	0.99			_
Lipshutz et al. (2011)	0.94	0.69	0.99			-
Waigankar et al. (2013)	0.86	0.42	0.98		-	_
Fuchinoue et al. (2011)	0.99	0.86	1.00			
Biglarnia et al. (2012)	0.98	0.70	1.00			 ≠
Hatakeyama et al. (2014)	0.96	0.62	1.00		I -	
Silvestre et al. (2014)	0.95	0.55	1.00		I—	_
	0.95	0.92	0.96			•
				0.00	0.50	1.00


<u>Rituximab</u> N=16, $I^2 = 0\%$

Study	Event rate	Lower limit	Upper limit	Event ra and 95%	
Toki et al. (2009) (1)	0.68	0.60	0.74		
Shimmura et al. (2004)	0.56	0.47	0.64		
Takahashi et al. (2005)	0.80	0.74	0.85		
Ishida et al. (2000)	0.73	0.63	0.81	1 1 1	
Shimmura et al. (2005)	0.79	0.69	0.86		╼ ।
Toki et al. (2009) (2)	0.79	0.66	0.88		╼╸╽
Fuchinoue (2011)	0.90	0.80	0.96		
Waigankar et al. (2013)	0.74	0.50	0.89	- 1 ⊢	█─▕
Tanabe et al. (2009) (1)	0.91	0.79	0.97		
Kohei et al. (2012)	0.91	0.79	0.97		
Kaihara et al. (2005)	0.50	0.26	0.74	_ — ——————————————————————————————————	- 1
Gloor et al. (2005)	0.87	0.66	0.96	- 1 - 1 -	= -
Kenomchi et al. (2008)	0.90	0.69	0.98		
Ishikawa et al. (2008)	0.83	0.37	0.98	_ I —	
Morath et al. (2012)	0.97	0.69	1.00		
Ando et al. (2004)	0.97	0.63	1.00	-	_
` /	0.80	0.73	0.85		•
				0.00 0.50	1.00

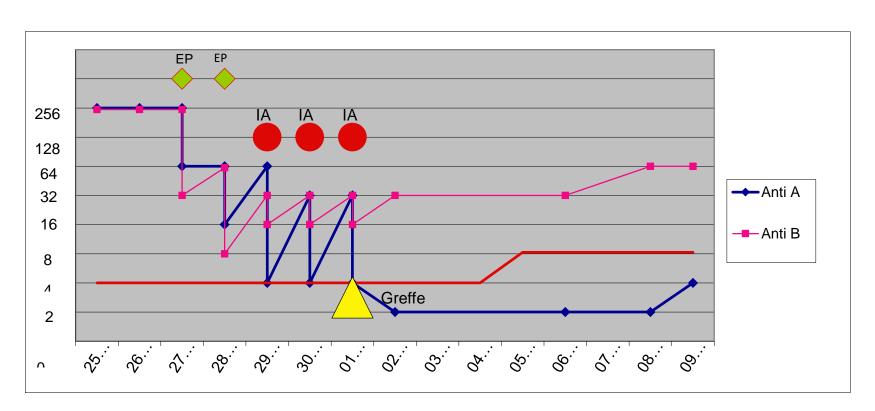
Splenectomy N=16, $I^2=14\%$

Meilleure survie des greffons avec Rituximab 95% [92%-96%] vs splénectomie 80% [73%-85%] La greffe ABOi: notre expérience au CHU de Montpellier

Protocole de désensibilisation greffes ABOi

Choix de la technique d'aphérèse:

Si titre d'Isoagglutinine ≤1/64: DFPP (ou EP), si titre ≥1/128: IA spécifiques


Greffe ABOI: Expérience Montpelliéraine Résultats

20 greffes ABOi entre 2012 et 2017:

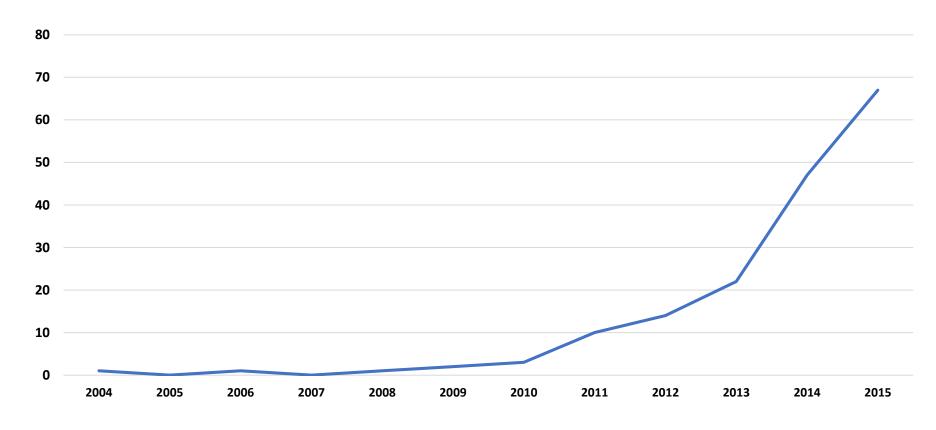
- 10 greffes A \rightarrow O, 5 greffes B \rightarrow O, 2 greffes AB \rightarrow B, 2 greffes AB \rightarrow A, 1 greffe B \rightarrow A
- Titre avant désensibilisation: ¼ et 1/512 (<1/8 le jour de la greffe)
- 1 échec de désensibilisation (augmentation du titre de 1/512 à 1/2048 avant désensibilisation)
- Age receveur 53ans (31-77ans), donneur 58ans (44-73ans)
- Moyenne de suivi de 2,8ans
- 100% de survie patient, 95% survie greffon
- Complications:
 - 1 thrombose artérielle immédiate: Pb chirurgical, (thrombus dans l'artère, pas de rejet humoral sur la pièce de Transplantectomie, titre spontanément bas ¼ avant désensibilisation)
 - 2 Rejets humoraux (J5 et J6)
 - 6 rejets cellulaires (4 BL, 2 IA)
 - 2 réactivation à CMV, 1 réactivation HSV (génital), 1 réactivation BK virus
- Fonction rénale (last FU):
 - créatininémie: 132umol/l DFG: 50,0 ml/min/1.73m2, Protéinurie: 0.14g/J

Protocole de désensibilisation greffes ABOi

• Exemple de désensibilisation ABOi

Mme K.

Greffe DV ABOi (son mari) A dans O le 01/07/2015


Créat à 85umol/l à J7 Pas de rejet aigu humoral ni cellulaire

Dernier suivi:

Creat: 102 umol/l

Greffe ABOi: une activité en plein développement

Nombre de greffes ABOi en France

Données du rapport médical de l'ABM, 2016

En conclusion pour la greffe ABOi

- L'incompatibilité ABO n'est plus une contre indication à la greffe rénale
- Les résultats des greffes ABOi sont comparables aux greffes ABO compatibles
- Mais: Risque de rejet humoral pendant les 3 premières semaines et un risque infectieux et de complications hémorragiques post opératoires majorées
- Différentes techniques d'aphérèse sont possibles: EP, DFPP IANS et IAS qui permettent généralement d'arriver à l'objectif de baisser le titre (<1/8 ou 1/16)
- Connaître leur efficacité (IgG, IgM), effets secondaires (Coagulation) pour adapter le nombre de séances et la surveillance périopératoire
- Le Rituximab a remplacé la splénectomie pour prevenir la reynthèse des anticorps après leur élimination

Merci pour votre attention!

